

Total Energy E_b :			Tersoff-Brenner Potential				
$E_b = \sum_i \sum_{j($	$-B^*_{ij}V_A(r_{ij})\}$	From	From D. W. Brenner: Phys. Rev. B, 42, 9458(1990)				
$V_{\kappa}(r) = f(r)\frac{D_{\epsilon}}{S-1}\exp\left\{-\beta\sqrt{2S}(r-R_{\epsilon})\right\} \qquad \qquad V_{\lambda}(r) = f(r)\frac{D_{\epsilon}S}{S-1}\exp\left\{-\beta\sqrt{\frac{2}{S}(r-R_{\epsilon})}\right\}$							
$B^{*}_{g} = \frac{B_{g} + B_{g}}{2}, B_{g} = \left[1 + \sum_{k(el,j)} \left[G_{e}(\theta_{jk})f(r_{k})\right]\right]^{-d} \qquad \qquad$							
$\begin{array}{ccccccc} D_e = \ 6.325 \mathrm{eV} & S = \ 1.29 & \beta = \ 1.5 \mathrm{\dot{A}}^{-1} & R_e = \ 1.315 \mathrm{\dot{A}} \\ Potential \ I & \delta = & 0.80469 & a_0 = & 0.011304 & c_0 = \ 19 & d_0 = & 2.5 \\ R_i = & 1.7 \mathrm{\dot{A}} & R_2 = & 2.0 \mathrm{\dot{A}} \end{array}$							
Potential II $D_r = 6.0 \text{eV}$ $S = 1.22$ $\beta = 2.1 \text{\AA}^{-1}$ $R_r = 1.39 \text{\AA}$ $\delta = 0.5$ $a_0 = 0.00020813$ $c_0 = 330$ $d_0 = 3.5$ $R_i = 1.7 \text{\AA}$ $R_2 = 2.0 \text{\AA}$							
	Single bonds		Double bond	s	Triple bonds		
	Fc(N/m)	Re (Å)	Fc (N/m)	Re (Å)	Fc (N/m)	Re (Å)	
Potential I	260	1.56	450	1.33	610	1.20	
Potential II	500	1.55	870	1.38	1190	1.29	
Experimental	450	1.54	950	1.33	1600	1.20	

